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Abstract

The second order constitutive equation for a hyperelastic material with arbitrary symmetry is derived[ In
developing a second order theory\ it is necessary to be discriminating in the choice of measures of defor!
mation[ Here the derivation is done in terms of the Biot strain\ which has a direct physical interpretation in
that its eigenvalues are the principal extensions of the deformation[ The constitutive equation is specialized
for the cases of isotropy and transverse isotropy[ The isotropic equation derived here is compared with
equations obtained by other authors in terms of the displacement gradient and the Green strain[ Þ 0887
Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The purpose of this paper is to present a derivation of the second order constitutive equation
for a hyperelastic material with arbitrary material symmetry[ This general constitutive equation is
then specialized for the material symmetries of isotropy and transverse isotropy[

Various authors have previously derived second order constitutive equations for isotropic elastic
materials[ These include theories in which the displacement gradient was used as the measure of
deformation for hyperelastic materials "see\ e[g[\ Rivlin\ 0842^ Murnaghan\ 0826^ Toupin and
Bernstein\ 0850^ Haughton and Lindsay\ 0882\ 0883# and Cauchy elastic materials "see\ e[g[\ Sheng\
0844#[ A number of these treatments are summarized in the Nonlinear Field Theories of Mechanics
"Truesdell and Noll\ 0854#[

Constitutive equations that are second order in a strain measure\ rather than the displacement
gradient\ have the advantage that the condition of material frame indi}erence can be easily
satis_ed[ Such a second order constitutive equation was presented by Murnaghan "0840#\ who
used the Green strain to derive a constitutive equation for isotropic hyperelastic material[

The derivation presented in this paper is done in terms of the Biot strain[ Unlike the situations
in classical in_nitesimal elastic and in _nite elasticity\ the choice of strain measure is important in
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the derivation of a second order theory[0 In the classical linear theory of elasticity\ the choice of
strain measure is inconsequential because\ to _rst order in the displacement gradient\ all measures
of strain reduce to the symmetric part of the displacement gradient[ In _nite elasticity\ the use of
any strain measure that is an isotropic function of the Green deformation tensor is equivalent to
the use of any other "Truesdell and Toupin\ 0859#[ In contrast\ a constitutive equation that is
second order in one strain measure will not be second order in another\ and the resulting expressions
are models of di}erent mechanical behaviors[ The Biot strain is selected for use here because it has
a clear physical interpretation] the eigenvalues of the Biot strain are the principal extensions[

A more detailed discussion of strain measures appears in Section 1\ which also includes a brief
review of derivatives of tensor valued functions of tensors and standard results on kinematics
and stress constitutive equations[ The derivation of the second!order constitutive equation for
hyperelastic material with arbitrary symmetry is presented in Section 2[ The resulting formulas for
the Cauchy and PiolaÐKirchho} stresses are presented in terms of derivatives of the strain energy
function with respect to the principal invariants appropriate to the symmetry of the material[ These
formulas are applied to the special cases of isotropy and transverse isotropy in Section 3[

Section 4 presents an examination of constitutive equations formulated in terms of two other
measures of deformation] the displacement gradient and the Green strain[ The constitutive equation
for a material with arbitrary symmetry that is second order in the displacement gradient is derived^
then it is specialized for isotropic materials and compared with constitutive equations previously
derived by others[ The constitutive equation which is second order in Green strain "obtained by
Murnaghan# is considered\ and its relation to the constitutive equation derived here in terms of
Biot strain is established[ The paper closes in Section 5 with a brief summary of the results[

1[ Background

This section contains a review of the background information needed for the remainder of the
paper[ Standard terminology is used throughout " for example\ see Gurtin\ 0873^ Ogden\ 0873#[

1[0[ Derivatives

The second order stress constitutive equations will be derived by expanding the _nite hyperelastic
constitutive equation in the strain[ Here the standard de_nitions and results associated with
_rst and second derivatives of tensor valued functions are summarized "see\ e[g[\ Gurtin\ 0873^
Dieudonne\ 0859\ for a rigorous presentation#[

Let M be a function which maps tensors into tensors[ "By tensor here I mean what is often
termed a second order tensor[ But\ to avoid confusion\ {{second!order|| will only be used in the
context of second!order expansions and constitutive equations[# Then\ if

0 This has been clearly recognized in the past] for example\ Ogden "0873\ p[ 249# pointed out that {{in a second order
theory it is important to distinguish between measures of deformation||[
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lim
X:9

=M"X# =
=X=

� 9\

M"X# is said to approach zero faster than X\ and one writes

M"X# � o"X# as X : 9[

A tensor valued function of tensors G is said to be di}erentiable at A if there exists a linear
transformation DG"A#\ called the derivative of G at A\ such that

G"A¦B#−G"A# � DG"A#ðBŁ¦o"B# as B : 9[ "1[0#

DG"A#ðBŁ is the value of the derivative DG"A# on the increment B[
If two tensor valued functions G and K are di}erentiable at A\ their product

P"A# � G"A#K"A#

is also di}erentiable at A\ and

DP"A#ðBŁ � DG"A#ðBŁK"A#¦G"A#DK"A#ðBŁ[ "1[1#

Let the tensor valued function G be di}erentiable at A\ and let the tensor valued function J be
di}erentiable at G"A#[ Then the derivative of the composition

X"A# � J"G"A##\

is given by the chain rule]

DX"A#ðBŁ � DJ"G"A##ðDG"A#ðBŁŁ[ "1[2#

The second derivative of a tensor valued function of a tensor G is the derivative of DG"A#[
Thus\ if the _rst derivative of G is di}erentiable\

D1G"A# � D"DG"A##[ "1[3#

It is often convenient to view the second derivative as the bilinear map

D1G"A#ðB\ CŁ � D"DG"A#ðBŁ# ðCŁ[

If the second derivative of G is continuous\ then it is symmetric in the increments\ i[e[\

D1G"A#ðB\ CŁ � D1G"A#ðC\ BŁ[ "1[4#

For a composite function\ the second derivative can be expressed in terms of the second
derivatives of the component functions[ Let X"A# � J"G"A## as above\ and suppose that J and G

are both twice di}erentiable[ Then X is twice di}erentiable\ and

D1X"A#ðB\ CŁ � DJ"G"A##ðD1G"A#ðB\ CŁŁ¦D1J"G"A##ðDG"A#ðBŁ\ DG"A#ðCŁŁ[ "1[5#

1[1[ Kinematics

Let B represent the body in a _xed reference con_guration in which it is unloaded and at rest[
A deformation f is a smooth one!to!one mapping that carries point p $ B into point x � f"p#[ The
deformation gradient
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F"p# � 9f"p#

is assumed to satisfy det F"p# × 9[ Unless required for clarity\ the dependence of _elds on p will be
left implicit in the remainder of the paper[

By the polar decomposition theorem the deformation gradient F can be uniquely represented as

F � RU\ "1[6#

where the rotation R is proper orthogonal\ and the right stretch tensor U is positive de_nite
symmetric[

The CayleyÐHamilton theorem states that every tensor satis_es its own characteristic equation\
so U meets

U2−IU1¦IIU−III0 � 9\ "1[7#

where 0 is the identity tensor\ and the principal invariants of U are

I � tr U\

II � 0
1
ð"tr U#1−tr U1Ł\

III � det U � 0
5
ð"tr U#2−2"tr U#"tr U1#¦1 tr U2Ł[ "1[8#

The right CauchyÐGreen deformation tensor is the square of the right stretch tensor]

C � FTF � U1[ "1[09#

The eigenvalues "l0\ l1\ l2# of U are called the principal stretches and describe the ratio of the
deformed length to the original length of a material _lament in the principal directions at a point[
The eigenvalues of C are the squares of the eigenvalues of U[

The displacement u is related to the deformation by

u"p# � f"p#−p\

so the displacement gradient H � 9u is related to the deformation gradient by

H � F−0[ "1[00#

The symmetric part of H\

E � sym H � 0
1
"H¦HT#\ "1[01#

is termed the elongation tensor "Truesdell and Toupin\ 0859#[ When the displacement gradient is
small\ E is the in_nitesimal strain and the skew part of H\

W � skw H � 0
1
"H−HT#\ "1[02#

is the in_nitesimal rotation[
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1[2[ Measures of strain

Two strain measures will be used in this paper] the Biot strain E0\ de_ned as

E0 � U−0^ "1[03#

and the Green strain E1\ given by

E1 � 0
1
"U1−0#[ "1[04#

These strains are related by

E1 � E0¦
0
1
"E0#1[ "1[05#

The eigenvalues of E0 are the principal extensions "d0\ d1\ d2#\ de_ned through the principal
stretches as

di � li−0\

where\ of course\ di × 9 indicates lengthening of a material _lament in the ith principal direction\
and di ³ 9 corresponds to shortening[

The Green strain has been used extensively in the _nite elasticity literature\ and many other
strain measures have also been found useful in various contexts[ It has long been recognized that
any uniquely invertible isotropic tensor function of C can be used as a measure of strain "e[g[\ see
Ogden\ 0873 or the discussion in Section 21 of Truesdell and Toupin\ 0859#\ and that\ in the
context of _nite elasticity\ such strain measures are equivalent in the sense that a constitutive
equation that can be expressed in terms of one such strain measure can also be expressed in terms
of any other[1

In contrast\ the use of di}erent strain measures is typically not equivalent in this sense for the
derivation of second order constitutive equations[ This is because each strain measure may contain
a di}erent power of the stretch[ As a speci_c example\ consider the Biot and Green strains de_ned
above[ Expansion of the stress constitutive equation in E0 with retention of terms that are linear
and quadratic in E0 will generate an expression that contains only linear and quadratic terms in
the extensions[ Expansion of the same stress constitutive equation in E1\ retaining terms that are
linear and quadratic in E1 will given an equation which contains third and fourth order terms in
the extensions\ as well as the terms which are _rst and second order in the extensions[ Thus\ even
though the forms of the equations are identical on a super_cial level\ the second order expansions
in E0 and E1 give di}erent approximations to the _nite elastic response "or in an alternative view\
describe physically di}erent materials#[

In the derivations presented in this paper\ the Biot strain will be used[ As noted in The Classical
Field Theories "p[ 158\ Truesdell and Toupin\ 0859#\ the use of U for the description of strain is
{{attractive in that its proper numbers are exactly the principal stretches||[ The associated strain
measure E0 has a direct correspondence to the physical notion of extension\ and therefore can best

1 Of course\ the use of one particular strain measure may be much more convenient or make it possible to write the
constitutive equation in an especially compact form[
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re~ect the physically intuitive notion of the elongation being small that is the basis of the derivation
of a second order constitutive equation[

Finally\ note that for the derivation of linear elastic constitutive equations the distinction among
the various strain measures does not have to be made because\ to _rst order\ they are identical^
speci_cally\

E1 � E0¦o"E0#\

and

E0 � E1¦o"E1#\

"see e[g[\ Hoger\ 0882a#[

1[3[ Stress

The body is assumed to respond to deformations from the reference con_guration in an elastic
manner\ so the constitutive equation for the Cauchy stress T can be written in terms of a response
function T
 as

T"p# � T
"F"p#\ p#[ "1[06#

In order that the elastic response be independent of observer\ the response function must satisfy

T
"QF# � QT
"F#QT "1[07#

for every deformation gradient F and every proper orthogonal tensor Q[
The _rst PiolaÐKirchho} stress S is de_ned in terms of the Cauchy stress through

S �"det F#TF−T �"det F#T
"F#F−T �] S
"F#[ "1[08#

In terms of S
\ observer independence requires that

S
"QF# � QS
"F# "1[19#

for all deformation gradients F and proper orthogonal Q[
For an elastic solid\ the material symmetry group at point p is the set of all proper orthogonal

tensors Q that satisfy

T
"F"p#Q\ p# � T
"F"p#\ p# "1[10#

for all deformation gradients F[ The material symmetry group at p will be denoted by Gp[ When
combined with "1[10#\ observer independence implies that the response function T
 is invariant
under Gp^ i[e[\ for all Q $ Gp

T
"QFQT# � QT
"F#QT[ "1[11#

In terms of the response function for the PiolaÐKirchho} stress\ "1[11# becomes
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S
"QFQT# � QS
"F#QT[ "1[12#

1[4[ The strain ener`y function

A material is hyperelastic if there exists a scalar valued function s¹ such that

SÞ"F"p#\ p# �
1s¹
1F

"F"p#\ p#\ "1[13#

where the gradient 1s¹ :1F is the unique tensor de_ned through

Ds¹ "F#ðAŁ �
1s¹
1F

"F# = A "1[14#

"Gurtin\ 0873#[ The function s¹ is called the strain energy or stored energy function[ In some of the
following calculations it will be convenient to write the gradient as

9s¹ "F# M
1s¹
1F

"F#[

In order that the principle of observer independence be satis_ed\ s¹ must meet

s¹ "F# � s¹ "U#[ "1[15#

From this point on\ s¼ will be used to denote the restriction of the strain energy function to the set
of positive de_nite symmetric tensors\ i[e[\

s¼ M s¹ =Psym[

It was shown by Hoger "0882b# that the PiolaÐKirchho} stress can be written in terms of
"1s¼ :1U#"U# as

S � R $
1s¼
1U

"U#¦
0

"I II−III# 60U1 1s¼
1U

"U#U−U
1s¼
1U

"U#U11
−I 0U1 1s¼

1U
"U#−

1s¼
1U

"U#U11¦I1 0U
1s¼
1U

"U#−
1s¼
1U

"U#U17%\ "1[16#

where the invariants\ de_ned in "1[8#\ are those of U[ By use of relation "1[08# the Cauchy stress is
seen to be

T �
0

III"I II−III#
R 6U1 1s¼

1U
"U#U1−I 0U1 1s¼

1U
"U#U¦U

1s¼
1U

"U#U11
¦"I1¦II# 0U

1s¼
1U

"U#U1−III 0U
1s¼
1U

"U#¦
1s¼
1U

"U#U1¦I III
1s¼
1U

"U#7RT[ "1[17#

These expressions for S and T are completely general\ and are valid for any objective strain energy
function[
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2[ The second order constitutive equation for a hyperelastic material

In this section the form of the second order stress constitutive equation appropriate for hyp!
erelastic materials with arbitrary symmetry is developed[ The derivation will be carried out by
expanding expression "1[17# for the Cauchy stress in the strain E0 � U−0[ First\ the appropriate
expansion for "1s¼ :1U#"U# will be obtained^ then that expansion\ together with the required
expressions for the scalar terms will be incorporated into "1[17# to produce the desired result[

2[0[ Expansion of the derivative of strain ener`y

The strain energy s¼ is a scalar valued function of U which is invariant under the symmetry group
of the material[ So it can be expressed as a function of the set of basic polynomial invariants of
the right stretch appropriate for the given symmetry since this set constitutes an integrity basis
"Spencer\ 0860^ Adkins\ 0859#\ and therefore a functional basis "Wineman and Pipkin\ 0854^
Spencer\ 0860#[ This method yields the canonical form for the strain "Wineman and Pipkin\ 0854^
Pipkin and Wineman\ 0851^ Spencer\ 0860#\ which will be expanded in a Taylors series to produce
the constitutive equation for the stress[

Given the material symmetry of the material\ let IU � "Ii"U## denote the complete set of the n
basic polynomial invariance of U appropriate for that material symmetry[ The strain energy is a
scalar valued function of these invariants\ so s¼ "U# is given by a smooth function s of the invariants
as

s¼ "U# � s"I0"U#\ I1"U#\ [ [ [ \ In"U## �] s"IU#[ "2[0#

By the chain rule

9s¼ "U# M
1s¼
1U

"U# �
1s

1Ij

"IU#
1Ij

1U
"U#[ "2[1#

Note that\ given the symmetry group of the material "1Ij:1U#"U# is easy to calculate[ "Isotropy
and transverse isotropy will be treated in Section 3[#

With U � 0¦E0\ the gradient of the strain energy can be expanded as

1s¼
1U

"U# �
1s¼
1U

"0¦E0#

�
1s¼
1U

"0#¦D
1s¼
1U

"0#ðE0Ł¦
0
1

D1 1s¼
1U

"0#ðE0\ E0Ł¦o"E1
0#[ "2[2#

In order that the stress vanish at F � 0\ it is necessary that

1s¼
1U

"0# � 9[ "2[3#

Now consider the second term in the expansion^ "2[1# can be used to write
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D
1s¼
1U

"U#ðE0Ł � D 6
1s

1Ij

"IU#
1Ij

1U
"U#7 ðE0Ł\

and application of the product rule gives

D
1s¼
1U

"U#ðE0Ł � 6D
1s

1Ij

"IU#ðE0Ł7
1Ij

1U
"U#¦

1s

1Ij

"IU# 6D
1Ij

1U
"U#ðE0Ł7[ "2[4#

The individual derivatives in this expression are

D
1s

1Ij

"IU#ðE0Ł � 6
1

1Ik 0
1s

1Ij

"IU#17 6
1Ik

1U
"U# = E07 "2[5#

and

D
1Ij

1U
"U#ðE0Ł �

11Ij

1U1
"U#ðE0Ł\

where\ for each j � 0 to n "11Ij:1U1#"U# is a fourth order tensor with components de_ned through

11Ij

1U1
"U#ðE0Ł �

11Ij

1Ukl 1Upm

"U#"E0#pm ek & el[

Recall that IU is the set of basic polynomial invariants\ so IU � "Ii"U## for i � 0 to n^ at U � 0\
I0 � "Ii"0##[ With this notation\ incorporation of "2[5# into "2[4# and evaluation of the result at
U � 0 gives the second term in "2[2#]

C0 ðE0Ł M D
1s¼
1U

"0#ðE0Ł �
11s

1Ik 1Ij

"I0#
1Ij

1U
"0# 6

1Ik

1U
"0# = E07¦

1s

1Ij

"I0#
11Ij

1U1
"0#ðE0Ł[ "2[6#

The name C0ðE0Ł is assigned to D"1s¼ :1U#"0#ðE0Ł to reduce the bulkiness of subsequent equations[
To obtain the third term in expansion "2[2#\ recall that

D1 1s¼
1U

"U#ðE0\ E0Ł � D 6D
1s¼
1U

"U#ðE0Ł7 ðE0Ł[

Incorporation of eqns "2[4# and "2[5# yields

D1 1s¼
1U

"U#ðE0\ E0Ł

� D 6
11s

1Ik 1Ij

"IU#
1Ij

1U
"U# 0

1Ik

1U
"U# = E01¦

1s

1Ij

"IU#
11Ij

1U1
"U#ðE0Ł7 ðE0Ł[ "2[7#

The product rule\ together with "2[5# and

D 6
11s

1Ik 1Ij

"IU#7 ðE0Ł �
12s

1Ip 1Ik 1Ij

"IU# 6
1Ip

1U
"U# = E07 "2[8#
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can be used to rewrite "2[7#[ The resulting expression is then evaluated at U � 0 to obtain the third
term in expansion "2[2#]

C1 ðE0\ E0Ł M D1 1s¼
1U

"0#ðE0\ E0Ł

�
12s

1Ip 1Ik 1Ij

"I0# 6
1Ip

1U
"0# = E07 6

1Ik

1U
"0# = E07

1Ij

1U
"0#

¦1
11s

1Ik 1Ij

"I0# 6
11Ij

1U1
"0#ðE0Ł7 6

1Ik

1U
"0# = E07

¦
11s

1Ik 1Ij

"I0#
1Ij

1U
"0# 6E0 =

11Ik

1U1
"0#ðE0Ł7¦6

1s

1Ij

"I0#7D 6
11Ij

1U1
"0#ðE0Ł7ðE0Ł[

"2[09#

Again\ for compactness of notation\ the name C1ðE0\ E0Ł is assigned to D1"1s¼ :1U#"0#ðE0\ E0Ł[
Finally\ "2[2# together with "2[3# gives the desired second order expansion for "1s¼ :1U#"U#]

1s¼
1U

"U# � C0 ðE0Ł¦
0
1

C1 ðE0\ E0Ł¦o"E1
0#\ "2[00#

where C0ðE0Ł and C1ðE0\ E0Ł are given by "2[6# and "2[09#\ respectively[ Of course\ C0ðE0Ł contains
only terms that are _rst order in E0\ and C1ðE0\ E0Ł contains terms that are of order E1

0[

2[1[ The scalar coef_cients

Here the expressions required for the expansion of terms which are functions of the set "I\ II\
III# in stresses "1[17# and "1[16# to second order in the strain E0 are displayed[ The invariants of
U can be expressed in terms of the basic polynomial invariants of E0 as

I � tr U � 2¦tr E0\

II � 0
1
""tr U#1−tr U1# � 2¦1 tr E0¦

0
1
""tr E0#1−tr E1

0#\

III � 0
5
""tr U#2−2"tr U#"tr U1#¦1 tr U2#

� 0¦tr E0¦
0
1
""tr E0#1−tr E1

0#¦
0
5
""tr E0#2−2"tr E0#"tr E1

0#¦1 tr E2
0#\ "2[01#

which can be rewritten in terms of the principal invariants of E0 as

I � 2¦IE0
\

II � 2¦1IE0
¦IIE0

\

III � 0¦IE0
¦IIE0

¦IIIE0
[ "2[02#
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Straightforward multiplication yields the following expressions for some of the scalar coe.cients
that appear in eqn "1[17#]

I1 � 8¦5IE0
¦"IE0

#1\

I1¦II � 01¦7IE0
¦""IE0

#1¦IIE0
#\

I III � 2¦3IE0
¦"IE0

#1¦2IIE0
¦o"E1

0#\

I II−III � 7¦7IE0
¦1""IE0

#1¦IIE0
#¦o"E1

0#[ "2[03#

The remaining scalar terms can each be expanded in a Taylor series\ with the result

III−0 � 0−IE0
¦"IE0

#1−IIE0
¦o"E1

0#\

"I II−III#−0 � 0
7
"0−IE0

¦IIE0
#¦o"E1

0#[ "2[04#

2[2[ The stress

Recall that "1[17# gives the Cauchy stress in terms of "1s¼ :1U#"U#^ evaluation of U at 0¦E0\
some algebra\ and incorporation of the second order expressions for "1s¼ :1U#"U# given by "2[00#
and eqns "2[03# and "2[04# for the scalar functions of the principal invariants provide the second
order constitutive equation for Cauchy stress]

T � R"C0 ðE0Ł¦sym"E0C0 ðE0Ł#−"tr E0#C0 ðE0Ł¦
0
1
C1 ðE0\ E0Ł#RT¦o"E1

0#\ "2[05#

with C0ðE0Ł and C1ðE0\ E0Ł given by "2[6# and "2[09#\ respectively[
By "1[08# and "2[05#\ the second order constitutive equation for PiolaÐKirchho} stress is

S � R"C0 ðE0Ł¦skw"E0C0 ðE0Ł#¦
0
1
C1 ðE0\ E0Ł#¦o"E1

0#[ "2[06#

Equations "2[05# and "2[06# are the general second order constitutive equations for a hyperelastic
material with arbitrary symmetry in terms of the Biot strain[ Given an expression for the strain
energy\ an explicit expression can be obtained for a particular material\ but no further information
can be obtained for the general case[ However\ if the symmetry of the material is known\ more
can be done as will be shown in the next section[

3[ Speci_c symmetries

In this section the forms of the second order stress constitutive equation derived in Section 2 are
specialized for isotropic and transversely isotropic materials[

3[0[ Isotropy

A material is isotropic at point p if the symmetry group at that point is the set of all rotations]
Gp � "Orth¦#[ For isotropy the set of basic polynomial invariants of U is
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IU � "I0"U#\ I1"U#\ I2"U## � "0 = U\ 0 = U1\ 0 = U2# "3[0#2

and I0 � "2\ 2\ 2#[ The derivatives of the basic polynomial invariants with respect to U are

1I0

1U
� 0\

1I1

1U
� 1U\

1I2

1U
� 2U1[ "3[1#

Direct calculation gives the terms that appear in C0ðE0Ł and C1ðE0\ E0Ł de_ned by eqns "2[6# and
"2[09#[ The results are

C0 ðE0Ł � h0"0 = E0#0¦h1E0 "3[2#

and

C1 ðE0\ E0Ł � 1"h4"0 = E0#10¦h3"0 = E1
0#0¦1h3"0 = E0#E0¦h2E

1
0#\ "3[3#

with the constants hi de_ned through

h0 �
11s

1I0 1I0

"I0#¦3
11s

1I1 1I1

"I0#

¦8
11s

1I2 1I2

"I0#¦3
11s

1I0 1I1

"I0#¦5
11s

1I0 1I2

"I0#¦01
11s

1I1 1I2

"I0#\ "3[4#

h1 � 1
1s

1I1

"I0#¦5
1s

1I2

"I0#\ "3[5#

h2 � 2
1s

1I2

"I0#\ "3[6#

h3 � 1
11s

1I1 1I1

"I0#¦8
11s

1I2 1I2

"I0#¦
11s

1I0 1I1

"I0#¦2
11s

1I0 1I2

"I0#¦8
11s

1I1 1I2

"I0#\ "3[7#

h4 �
0
1 6

12s

1I0 1I0 1I0

"I0#¦5
12s

1I0 1I0 1I1

"I0#¦8
12s

1I0 1I0 1I2

"I0#

¦01
12s

1I0 1I1 1I1

"I0#¦25
12s

1I0 1I1 1I2

"I0#¦16
12s

1I0 1I2 1I2

"I0#

¦7
12s

1I1 1I1 1I1

"I0#¦25
12s

1I1 1I1 1I2

"I0#¦43
12s

1I1 1I2 1I2

"I0#¦16
12s

1I2 1I2 1I2

"I0#7[ "3[8#

Incorporation of these results into eqn "2[05# for the Cauchy stress leads to

2 Alternatively\ the invariants "I\ II\ III# de_ned in "1[8# could be used\ but the set of basic polynomial invariants is
more convenient for the calculations[
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T � R"h0"0 = E0#0¦h1E0¦"h1¦h2#E1
0¦h3"0 = E1

0#0

¦"h0−h1¦1h3#"0 = E0#E0¦"h4−h0#"0 = E0#10#RT¦o"E1
0#[ "3[09#

This expression reduces to the standard _rst order constitutive equation for an isotropic hyp!
erelastic material with two constants[ Of course\ given a particular isotropic strain energy function\
it is straightforward to calculate the terms in "3[09#\ which would give the explicit second order
isotropic hyperelastic constitutive equation[ More typically\ however\ the values of the constants
for a particular material would have to be obtained by experiment[

3[1[ Transverse isotropy

A material is transversely isotropic at point p if the symmetry group at that point is the set of
all rotations about a single preferred axis[ Thus\ the symmetry group for a transversely isotropic
material at p is Gp � "Q $ Orth¦] Qk � k#\ where the unit vector k coincides with the axis of
symmetry at p[

The complete list of basic polynomial invariants for transverse isotropy is

IU � "I0"U#\ I1"U#\ I2"U#\ I3"U#\ I4"U##

� "0 = U\ 0 = U1\ 0 = U2\ k = Uk\ k = U1k#\ "3[00#

and I0 � "2\ 2\ 2\ 0\ 0#[ It will be convenient to write all of the invariants as inner products of
tensors^ to this end note that

k ="Ak# �"k & k# = A � 0 = ""k & k#A#

for all tensors A[
The derivatives of the basic polynomial invariants with respect to U are given by "3[1# and

1I3

1U
�"k & k#\

1I4

1U
�"k & k#U¦U"k & k#[ "3[01#

Direct calculation together with "3[1# and "3[01# gives C0ðE0Ł from eqn "2[6#\ and C1ðE0\ E0Ł from
"2[09#]

C0 ðE0Ł � h0"0 = E0#0¦h1E0¦m0"0 = E0#"k & k#¦m0 ð"k & k# = E0Ł0

¦m1 ð"k & k# = E0Ł"k & k#¦m2 ð"k & k#E0¦E0"k & k#Ł^ "3[02#

C1 ðE0\ E0Ł � 1"h2E
1
0¦h3"0 = E1

0#0¦1h3"0 = E0#E0¦h4"0 = E0#10

¦m3""k & k# = E1
0#0¦m3"0 = E0#""k & k#E0¦E0"k & k##

¦1m4""k & k# = E0#E0¦m4"0 = E1
0#"k & k#¦m5""k & k# = E1

0#"k & k#

¦m5""k & k# = E0#""k & k#E0¦E0"k & k##¦m6"0 = E0#""k & k# = E0#0

¦m7""k & k# = E0#10¦1m7"0 = E0#""k & k# = E0#"k & k#

¦m8"0 = E0#1"k & k#¦m09""k & k# = E0#1"k & k##^ "3[03#

where the hi are given in eqns "3[2#Ð"3[6#\ and the mi are de_ned by
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m0 �
11s

1I0 1I3

"I0#¦1
11s

1I1 1I3

"I0#

¦2
11s

1I2 1I3

"I0#¦1
11s

1I0 1I4

"I0#¦3
11s

1I1 1I4

"I0#¦5
11s

1I2 1I4

"I0#\ "3[04#

m1 �
11s

1I3 1I3

"I0#¦3
11s

1I3 1I4

"I0#¦3
11s

1I4 1I4

"I0#\ "3[05#

m2 �
1s

1I4

"I0#\ "3[06#

m3 �
11s

1I0 1I4

"I0#¦1
11s

1I1 1I4

"I0#¦2
11s

1I2 1I4

"I0#\ "3[07#

m4 �
11s

1I1 1I3

"I0#¦2
11s

1I2 1I3

"I0#¦1
11s

1I1 1I4

"I0#¦5
11s

1I2 1I4

"I0#\ "3[08#

m5 �
11s

1I3 1I4

"I0#¦1
11s

1I4 1I4

"I0#\ "3[19#

m6 �
12s

1I0 1I0 1I3

"I0#¦1
12s

1I0 1I0 1I4

"I0#¦3
12s

1I0 1I1 1I3

"I0#

¦7
12s

1I0 1I1 1I4

"I0#¦5
12s

1I0 1I2 1I3

"I0#¦01
12s

1I0 1I2 1I4

"I0#

¦3
12s

1I1 1I1 1I3

"I0#¦7
12s

1I1 1I1 1I4

"I0#¦01
12s

1I1 1I2 1I3

"I0#¦13
12s

1I1 1I2 1I4

"I0#

¦8
12s

1I2 1I2 1I3

"I0#¦07
12s

1I2 1I2 1I4

"I0#\ "3[10#

m7 �
0
1 6

12s

1I0 1I3 1I3

"I0#¦3
12s

1I0 1I3 1I4

"I0#¦3
12s

1I0 1I4 1I4

"I0#

¦1
12s

1I1 1I3 1I3

"I0#¦7
12s

1I1 1I3 1I4

"I0#¦7
12s

1I1 1I4 1I4

"I0#

¦2
12s

1I2 1I3 1I3

"I0#¦01
12s

1I2 1I3 1I4

"I0#¦01
12s

1I2 1I4 1I4

"I0#7\ "3[11#

m8 �
0
1 6

12s

1I0 1I0 1I3

"I0#¦3
12s

1I0 1I1 1I3

"I0#¦5
12s

1I0 1I2 1I3

"I0#
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¦3
12s

1I1 1I1 1I3

"I0#¦01
12s

1I1 1I2 1I3

"I0#¦8
12s

1I2 1I2 1I3

"I0#

¦1
12s

1I0 1I0 1I4

"I0#¦7
12s

1I0 1I1 1I4

"I0#¦01
12s

1I0 1I2 1I4

"I0#

¦7
12s

1I1 1I1 1I4

"I0#¦13
12s

1I1 1I2 1I4

"I0#¦07
12s

1I2 1I2 1I4

"I0#7\ "3[12#

m09 �
0
1 6

12s

1I3 1I3 1I3

"I0#¦5
12s

1I3 1I3 1I4

"I0#¦01
12s

1I3 1I4 1I4

"I0#¦7
12s

1I4 1I4 1I4

"I0#7[
"3[13#

These expressions for C0ðE0Ł and C1ðE0\ E0Ł\ the identity

9 � E0"k & k#E0¦ð"k & k#E1
0¦E1

0"k & k#Ł

−"0 = E0#ð"k & k#E0¦E0"k & k#Ł−E1
0

−ð"k & k# = E0ŁE0¦"0 = E0#E0¦
0
1
ð"0 = E0#1¦"0 = E1

0#Ł"k & k#

−"ð"k & k# = E1
0Ł−"0 = E0#ð"k & k# = E0Ł¦

0
1
ð"0 = E0#1¦"0 = E1

0#Ł#0 "3[14#

"Rivlin\ 0844# and eqn "2[06# for the Cauchy stress yield the second order constitutive equation
for a transversely isotropic hyperelastic material]

T�R"h0"0 =E0#0¦h1E0¦m0"0 =E0#"k&k#¦m0ð"k&k# = E0Ł0

¦m1ð"k&k# = E0Ł"k&k#¦m2 ð"k&k#E0¦E0"k&k#Ł

¦"h1¦h2¦m2#E1
0¦"h3−

0
1
m2#"0 = E1

0#0

¦"h0−h1¦1h3−m2#"0 =E0#E0¦"h4−h0¦
0
1
m2#"0 =E0#10

¦"0
1
m0¦m3#"0 =E0#""k&k#E0¦E0"k&k##¦"m0¦m2¦1m4#""k&k# = E0#E0

¦"0
1
m1¦m5#""k&k# = E0#""k&k#E0¦E0"k&k##

−m2""k&k#E1
0¦E1

0"k&k##¦"m2¦m3#""k&k# = E1
0#0

¦"−m0−
0
1
m2¦m8#"0 =E0#1"k&k#¦"0

1
m2¦m4#"0 =E1

0#"k&k#

¦"−m0−m2¦m6#"0 =E0#""k&k# = E0#0¦m5""k&k# = E1
0#"k&k#

¦"−m1¦1m7#"0 =E0#""k&k# = E0#"k&k#¦m7""k&k# = E0#10

¦m09""k&k# = E0#1"k&k##RT¦o"E1
0#[ "3[15#
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This expression reduces to the standard _rst order constitutive equation for a transversely isotropic
hyperelastic material with _ve constants[

4[ Other second order theories

The focus of this paper has been on the development of constitutive equations which are second
order in the Biot strain E0[ As discussed in Section 1[2\ this strain measure was chosen due to its
transparent relation to the physical quantity of extension[ In this section\ constitutive equations
written in terms of two other deformation measures are considered[ First\ I will focus on the second
order constitutive equation in H[ The section then closes with a discussion of a constitutive
equation which is second order in the Green strain E1[

4[0[ Constitutive equations that are second order in H

A number of authors have obtained second order constitutive equations for isotropic elastic
materials in which the stress is second order in the displacement gradient H[ An essential di.culty
of these second order constitutive equations is that the strain and the rotation associated with the
deformation cannot be separated^ and because the rotation remains buried in the constitutive
equation\ it is di.cult to construct an expression that is frame indi}erent[ This di.culty is not
alleviated by use of the elongation tensor E � sym H\ since it is not a strain measure\ but rather a
simple linear combination of the displacement gradient " for a discussion see\ e[g[\ Truesdell and
Toupin\ 0859#[ Despite this inherent di.culty\ there are situations in which a constitutive equation
that is second order in H may be useful[

This section begins with a derivation of the constitutive equation for a material with arbitrary
symmetry that is second order in H\ and is formulated in terms of the derivatives of the strain
energy function s¼ "U#[ I present my own derivation\ using the same notation as Section 2 in terms
of Biot strain\ to make explicit the relation between constitutive equations derived in terms of
these two di}erent measures of deformation[ This constitutive equation is then used to obtain the
constitutive equation relevant to the special case of isotropy\ and the result is compared with those
of several standard references for constitutive equations which are second order in H[

Derivation of the constitutive equation that is second order in H

Recall from Section 1[4\ eqn "1[13#\ that the PiolaÐKirchho} stress can be expressed as the
gradient of the strain energy function s¹ \ and that s¼ was de_ned as the restriction of s¹ to the set of
positive de_nite symmetric tensors[

First\ note that U can be written in terms of F through

U � U"F# � zFTF[ "4[0#

Thus\ by 1[15\

s¹ "F# � s¼ "U# � s¼ "U"F##[ "4[1#

By the chain rule\
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Ds¹ "F#ðAŁ � Ds¼ "U"F##ðDU"F#ðAŁŁ\

which can be rewritten in gradient notation as

A = 9s¹ "F# � A = "DU"F##Tð9s¼ "U"F##Ł[ "4[2#

The increment A is an arbitrary constant tensor[ Note that DU"F# is a fourth order tensor with
components

"DU"F##ijkl �
1Ukl

1Fij

"F#[ "4[3#

The goal here is to write 9s¹ "F# as a Taylor series in terms of the displacement gradient H and
the constants displayed in Section 3[0[ With F � 0¦H\ the gradient of the strain energy can be
expanded as

9s¹ "F# � 9s¹ "0¦H#

� 9s¹ "0#¦D9s¹ "0#ðHŁ¦0
1
D19s¹ "0#ðH\ HŁ¦o"H1# "4[4#

as H : 9[
Equation "4[2# evaluated at F � 0\ together with U"0# � 0 and recognition that A is arbitrary\

give

9s¹ "0# � "DU"0##Tð9s¼ "0#Ł[

Since 9s¼ "0# � 9 by "2[3#\

9s¹ "0# � 9[ "4[5#

Now consider D9s¹ "0#ðHŁ[ By di}erentiating "4[2# one can obtain

D9s¹ "F#ðHŁ = A � D
1s¼
1U

"U"F##ðDU"F#ðHŁŁ = DU"F#ðAŁ¦
1s¼
1U

"U"F## = D1U"F#ðA\ HŁ[ "4[6#

Because A is arbitrary\ this expression evaluated at F � 0 together with "2[3# give

D9s¹ "0#ðHŁ � "DU"0##T $D
1s¼
1U

"0#ðDU"0#ðHŁŁ %[ "4[7#

To get any farther it is necessary to incorporate the explicit expression for the derivative of the
function U"F# � zFTF[ The required derivative can be shown to be

DU"0#ðAŁ � sym A\ "4[8#

and\ speci_cally\ when the increment is H\

DU"0#ðHŁ � E[ "4[09#

Thus "4[7# is just
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D9s¹ "0#ðHŁ � D
1s¼
1U

"0#ðEŁ "4[00#

since the derivative of 1s¼ :1U is symmetric[
Now consider D19s¹ "0#ðH\ HŁ[ By "1[3# and the chain rule\ the derivative of "4[6# is

D19s¹ "U"F##ðH\ HŁ = A � D"D9s¹ "U"F##ðHŁ#ðHŁ = A

� 6D 0D
1s¼
1U

"U"F##ðDU"F#ðHŁŁ1 ðHŁ7 = DU"F#ðAŁ

¦1D
1s¼
1U

"U"F##ðDU"F#ðHŁŁ = D1U"F#ðA\ HŁ

¦
1s¼
1U

"U"F## = D"D1U"F#ðA\ HŁ#ðHŁ[ "4[01#

The _rst part of the leading term on the right hand side of "4[01# can be obtained by use of the
chain rule "1[5#[ The result\ when evaluated at F � 0\ is

6D 0D
1s¼
1U

"0#ðDU"0#ðHŁŁ1 ðHŁ7
� D1 1s¼

1U
"0#ðDU"0#ðHŁ\ DU"0#ðHŁŁ¦D

1s¼
1U

"0#ðD1U"0#ðH\ HŁŁ[

Recall that "1s¼ :1U#"0# � 9\ so the last term in "4[01# will vanish when evaluated at F � 0[ Thus\

D19s¹ "U"0##ðH\ HŁ = A � D1 1s¼
1U

"0#ðDU"0#ðHŁ\ DU"0#ðHŁŁ = DU"0#ðAŁ

¦D
1s¼
1U

"0#ðD1U"0#ðH\ HŁŁ = DU"0#ðAŁ¦1D
1s¼
1U

"0#ðDU"0#ðHŁŁ = D1U"0#ðA\ HŁ[ "4[02#

To proceed the second derivatives of U"F# are required[ These are

D1U"0#ðA\ HŁ � 0
1
"ATH¦HTA#−0

1
"E"sym A#¦"sym A#E#\ "4[03#

D1U"0#ðH\ HŁ � HTH−E1[ "4[04#

The _rst and second derivative of "1s¼ :1U#"U# are symmetric and A is arbitrary\ so eqns "4[8# and
"4[09#\ together with a considerable amount of algebra\ provide the sought for expression]

D19s¹ "U"0##ðH\ HŁ � D1 1s¼
1U

"0#ðE\ EŁ¦D
1s¼
1U

"0#ðHTH−E1Ł

¦1H 0D
1s¼
1U

"0#ðEŁ1¦0D
1s¼
1U

"0#ðEŁ1E−E 0D
1s¼
1U

"0#ðEŁ1[ "4[05#
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Finally\ "4[5#\ "4[00# and "4[05# can be incorporated into the Taylor expansion "4[4# to provide
an expression for 9s¹ "F#]

9s¹ "F# � D
1s¼
1U

"0#ðEŁ¦
0
1 6D1 1s¼

1U
"0#ðE\ EŁ¦D

1s¼
1U

"0#ðHTH−E1Ł

¦1H 0D
1s¼
1U

"0#ðEŁ1¦0D
1s¼
1U

"0#ðEŁ1E−E 0D
1s¼
1U

"0#ðEŁ17¦o"E1#[ "4[06#

Equations "1[13# and "1[08#\ together with the approximation "detF#−0 � 0−"0 = E#¦o"H#\ give
the following formula for the Cauchy stress in terms of 9s¹ "F#]

T � "0−"0 = E##9s¹ "F#"0¦HT#¦o"E1#[ "4[07#

Thus\ by "4[06# and "4[07#\ the constitutive equation for a hyperelastic material of arbitrary
symmetry that is second order in H can be written as

T � D
1s¼
1U

"0#ðEŁ−"0 = E# 0D
1s¼
1U

"0#ðEŁ1 0¦0D
1s¼
1U

"0#ðEŁ1HT

¦
0
1 6D1 1s¼

1U
"0#ðE\ EŁ¦D

1s¼
1U

"0#ðHTH−E1Ł

¦1H 0D
1s¼
1U

"0#ðEŁ1−0D
1s¼
1U

"0#ðEŁ1E¦E 0D
1s¼
1U

"0#ðEŁ17¦o"E1#\ "4[08#

where the derivatives D"1s¼ :1U#"0# and D1"1s¼ :1U#"0# are given by "2[6# and "2[09#[

The second order constitutive equation for isotropic materials

Turning to the special case of isotropy recall that\ for any increment A\

C0 ðAŁ � D
1s¼
1U

"0#ðAŁ � h0"0 = A#¦h1A

and

0
1

C1 ðA\ AŁ �
0
1

D1 1s¼
1U

"0#ðA\ AŁ � h4"0 = A#10¦h3"0 = A1#0¦1h3"0 = A#A¦h2A
1

by "3[2# and "3[3#\ respectively\ and the scalar coe.cients are given by eqns "3[4# through "3[8#[
So for isotropy "4[08# becomes

T � h0"0 = E#0¦h1E¦"h4−h0#"0 = E#10¦"h3−
0
1
h0#"0 = E1#0

¦"1h3−h1¦h0#"0 = E#E¦"h2−
2
1
h1#E1¦0

1
h0"0 = HTH#0¦h1"HE¦EHT¦0

1
HTH#¦o"E1#[

"4[19#
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Various authors have derived constitutive equations that are second order in H for hyperelastic
isotropic materials\ including Haughton and Lindsay "0882\ 0883#\ Rivlin "0842#\ Murnaghan
"0826#\ and Toupin and Bernstein "0850#[ Several of these constitutive equations are summarized
in Section 55 of Truesdell and Noll "0854#[ The equation displayed there for Cauchy stress is3

T � b0"0 = E#0¦1b1E¦0
1
b0"0 = HHT#0¦b1HHT¦b2"0 = E#1

¦"1b0−1b1−b3#
0
1
""0 = E#1−"0 = E1##¦b3"0 = E#E¦b4E

1¦o"E1#[ "4[10#

By noting that

HE¦EHT¦0
1
HTH � 1E1¦0

1
HHT

and

0 = HHT � 0 = HTH\

one can easily show that "4[19# is equivalent to "4[10# where the constants are related through

b0 � h0\ b1 � 0
1
h1\ b2 � h4¦h3−

2
1
h0\ b3 � 1h3¦h0−h1\ and b4 � h2¦

0
1
h1[

4[1[ A constitutive equation that is second order in E1

Murnaghan "0840# obtained a second order constitutive equation by approximating the strain
energy function of an isotropic material as a sum of terms which were\ respectively\ zeroth\ _rst\
second and third order in the Green strain E1[ By di}erentiating this approximation of the strain
energy\ and incorporating the result into "2[06#\ he obtained

T � R"l"0 = E1#0¦1mE1¦"3m¦n#E1
1¦"n−1m# 0

1
ð"0 = E1#1¦"0 = E1

1#Ł0

¦"1l−1m¦1m−n#"0 = E1#E1¦"l−l#"0 = E1#10#RT¦o"E1
1#\ "4[11#

where l and m are the classical _rst order elastic constants\ and l\ m\ and n are Murnaghan|s second
order elastic constants[ Recall that E1 is second order in the principal extensions\ as discussed in
Section 1[2\ so this constitutive equation contains terms that are third and fourth order in the
principal extensions[

How does this equation di}er from the constitutive eqn "3[09# which is second order in the Biot
strain< Equation "1[05# gives the Green strain in terms of the Biot strain^ incorporation of that
expression into "4[11# yields

T � R"ðl"0 = E0#0¦1mE0¦"4m¦n#E1
0¦

0
1
"1m−n¦l#"0 = E1

0#0

¦"1l−1m¦1m−n#"0 = E0#E0¦"l¦0
1
n−m−l#"0 = E0#10Ł

3 The constants bi displayed here are simply related to the constants mai in Truesdell and Noll "0854#[ Speci_cally\
bi � mai for i � 0\ 1\ 2\ and b3 � ma4\ and b4 � ma5[ Here\ the condition that a3¦a4 � 1a0−1a1\ which is required by the
assumption of hyperelasticity\ has been incorporated[
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¦ð"3m¦n#E2
0¦"l¦0

1
n−m−l#"0 = E0#"0 = E1

0#0

−"0
1
n−m#"0 = E2

0#0¦"m−0
1
n−m¦l#"0 = E0#E1

0¦"m−0
1
n−m¦l#"0 = E1

0#E0Ł

¦ð"m¦0
3
n#E3

0¦
0
3
"l¦0

1
n−m−l#"0 = E1

0#10

−0
7
"n−1m#"0 = E3

0#0¦0
1
"m−0

1
n−m¦l#"0 = E1

0#E1
0Ł#RT¦o"E1

1#[ "4[12#

Note that "4[12# contains "in the _rst set of square brackets# exactly the second order constitutive
eqn "3[09# derived in Section 3[0 for an isotropic material[ The coe.cients in the two equations
are related through h0 � l\ h1 � 1m\ h2 � 2m¦n\ h3 � 0

1
"1m−n¦l#\ h4 � l¦0

1
n−m[ In addition\

"4[12# includes "in the second set of square brackets# a term that is third order in E0 and a fourth
order term "the third square brackets#[ Although it includes a number of third and fourth order
terms in the extensions\ eqn "4[12# clearly is not the general form of a constitutive equation which
is fourth order "or even third order# in the extensions[ Such an expression would necessarily
contain more than _ve constants[ Rather it can be viewed as a constitutive model of a special class
of materials which includes all second order terms and only some terms which are third and fourth
order in the extensions[

5[ Summary

In this paper\ the general second order constitutive equation for a hyperelastic material with
arbitrary material symmetry is derived in terms of the Biot strain[ This strain measure has a clear
physical interpretation in that its| eigenvalues are the principal extensions[ The general second
order equation is specialized to obtain the second order constitutive equations appropriate to the
cases of isotropy and transverse isotropy[

The equation obtained here for isotropy is compared with a second order equation obtained by
Murnaghan\ which is expressed in terms of the Green strain[ Although Murnaghan|s constitutive
equation agrees with the one derived in this paper up to terms that are squared in the principal
extensions\ it contains additional terms that are third and fourth order in the extensions\ but it
does not include all such terms[

The use of a strain measure\ rather than the displacement gradient\ for obtaining a second order
constitutive equation has the advantage that the condition of material frame indi}erence can be
easily satis_ed\ so that the contribution of the rotation can be readily distinguished from that of
the strain[ However\ the most common second order constitutive equation in the literature is that
of an isotropic material which is second order in the displacement gradient[ For the purpose of
comparison\ the general constitutive equation for a material of arbitrary symmetry that is second
order in the displacement gradient is derived[ This general constitutive equation is then specialized
to isotropic materials[ The resulting equation is shown to be equivalent to the standard second
order constitutive equation for isotropic materials given in terms of the displacement gradient[
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